聚焦医美发展新机遇 多方拜特布局细胞医美 LPE发挥神经突刺激和神经保护作用 研究人员开发了一些方法来了解结核菌如何食用自己喜欢的食物 医学成像技术的进步使胎儿白质束的可视化成为可能 新研究为阿尔茨海默氏病带来希望 研究人员发现了可以预测死亡率的肠道菌群特征 科学家设计了新的药物化合物来遏制疟疾 研究人员发现合成DNA的新方法 研究表明有机肉不太可能被耐多药细菌污染 研究小组调查了结节性硬化症的原因 人工智能有助于预测患牙植入物患者的治疗结果 麻醉剂可能会影响tau在大脑中的传播 肥胖女孩成年后面临心血管疾病的风险增加 古代肠道菌群可能为现代疾病提供线索 俄亥俄州立大学的一项新研究检查了五个品牌的开菲尔的细菌含 新版本的光敏蛋白可以照亮我们大脑的交流途径的黑暗角落 睾丸激素可作为免疫反应的刹车踏板 对于患有慢性肩痛的轮椅使用者而言 生物制剂是一种有效的治疗选择 不完美的记忆如何导致错误的选择 Scripps研究科学家提出了一种创新的疫苗方法 全球超过150位专家提供循证指南以减少儿童放射治疗的长期影响 2021鱼跃医疗新品发布会,创新重塑医疗器械 科学家利用基因工程探索与精神疾病有关的机制 加州大学洛杉矶分校的科学家对免疫细胞的语言进行解码 学习肠道微生物教育免疫系统的新方法 身体如何与好的肠道细菌建立健康关系 研究人员开发了一种模型用于在实验室中研究子宫液 兔 大豆可以满足家庭蛋白质需求 明尼苏达大学医学院的研究人员确定了镇静药物的靶标 一个PROMPT低成本平台可加快淋病检测并发现抗生素耐药性 研究人员用光测量脑血流量和活动 研究表明古代人的肠道微生物种类更多 持续不断的头痛可能意味着您处于高血压的危险中 研究人员发现抑郁症和乳腺癌是如何联系的 新的单细胞谱系追踪技术可提供有关转移驱动因素的详细见解 苦丁茶多酚可能有助于预防结肠炎 经过几十年的进展研究人员可能正在赶上败血症 精神分裂症的听力可能始于婴儿期 通过鼻子给予普通的肌肉松弛剂显示出治疗神经退行性疾病的潜力 国内首个《植物基食品认证实施规则》备案发布 东风一顾芳华尽,春意丛生桃花姬 心脏病发作后使用造影剂MRI可以提高生存率 治疗伤口的新材料可以抵抗耐药菌 仅仅医疗补助扩张并不能解决癌症护理方面的差距 斑马鱼的大脑显示出新的神经元以协调的方式在大脑中形成 如何预测住院患者的严重流感 青春期是提高健康素养的机会之窗 冥想和精神健康可以保持衰老后的认知功能 四药组合可阻止癌症在小鼠中传播 远程医疗能否减轻而不是加剧医疗保健差距
您的位置:首页 >Science杂志 > 大脑行为 >

深度学习工具可实现动物行为监控

一个新的工具包通过高速,准确地测量动物的身体姿势超越了现有的机器学习方法。这项名为DeepPoseKit的深度学习工具包由康斯坦茨大学集体行为高级研究中心和马克斯·普朗克动物行为研究所的研究人员开发,将先前的姿势估计方法与最新技术相结合。在计算机科学领域。这些新开发的深度学习方法仅需训练100个示例,即可从以前看不见的图像中正确测量身体姿势,并可用于研究具有挑战性的野外环境中的野生动物。今天发布在开放获取期刊eLife上,

动物必须与物质世界互动才能生存和繁殖,研究它们的行为可以揭示为实现这些最终目标而发展起来的解决方案。然而,仅通过直接观察就很难定义行为:偏见和人类观察者有限的处理能力抑制了可以从动物身上收集到的行为数据的质量和分辨率。

机器学习已经改变了这一点。近年来,已经开发出各种工具,使研究人员可以直接从图像或视频中自动跟踪动物身体部位的位置,而无需在动物身上施加侵入性标记或手动对行为进行评分。然而,这些方法具有限制性能的缺点。“通过深度学习来测量身体姿势的现有工具要么更慢,更准确,要么更快,更不准确-但我们希望实现两全其美。”马克斯·普朗克动物行为研究所的研究生,主要作者杰克·格雷夫(Jake Graving)说。

在这项新研究中,研究人员提出了一种克服速度准确性折衷方法。这些新方法使用高效,最新的深度学习模型来检测图像中的身体部位,并使用快速算法来高精度地计算这些检测到的身体部位的位置。这项研究的结果还表明,这些新方法可以应用于物种和实验条件-从苍蝇,蝗虫和处于受控实验室环境的小鼠到野外相互作用的斑马群。该论文的合著者布莱尔·科斯特洛(Blair Costelloe)博士在肯尼亚研究斑马。他说:“我们现在可以使用DeepPoseKit为斑马收集的姿势数据使我们确切地知道每个人在小组中的工作以及他们如何与之互动相比之下,

由于其高性能和易于使用的软件界面(该代码可在Github上公开获得,https://github.com/jgraving/deepposekit),研究人员说DeepPoseKit可以立即使各个领域的科学家受益-例如神经科学,心理学和生态学-以及专业知识水平。关于此主题的工作还可能会影响我们的日常生活,例如改进智能手机上使用的手势识别类似算法或诊断和监视人畜运动相关疾病。

该论文的资深作者Iain Couzin表示:“在短短的几年之内,深度学习已经从一种利基,难以使用的方法变成了世界上最民主,使用最广泛的软件工具之一。”他领导康斯坦茨大学集体行为高级研究中心和马克斯·普朗克动物行为研究所的集体行为系。“我们的希望是,我们可以通过开发任何人都可以使用的易于使用的高性能工具来为行为研究做出贡献。”诸如此类的工具对于研究行为非常重要,因为正如Graving所说:“它们使我们可以从第一性原则开始,或者说“动物如何在空间中移动其身体?”,而不是对构成行为的主观定义。

标签:

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。