聚焦医美发展新机遇 多方拜特布局细胞医美 LPE发挥神经突刺激和神经保护作用 研究人员开发了一些方法来了解结核菌如何食用自己喜欢的食物 医学成像技术的进步使胎儿白质束的可视化成为可能 新研究为阿尔茨海默氏病带来希望 研究人员发现了可以预测死亡率的肠道菌群特征 科学家设计了新的药物化合物来遏制疟疾 研究人员发现合成DNA的新方法 研究表明有机肉不太可能被耐多药细菌污染 研究小组调查了结节性硬化症的原因 人工智能有助于预测患牙植入物患者的治疗结果 麻醉剂可能会影响tau在大脑中的传播 肥胖女孩成年后面临心血管疾病的风险增加 古代肠道菌群可能为现代疾病提供线索 俄亥俄州立大学的一项新研究检查了五个品牌的开菲尔的细菌含 新版本的光敏蛋白可以照亮我们大脑的交流途径的黑暗角落 睾丸激素可作为免疫反应的刹车踏板 对于患有慢性肩痛的轮椅使用者而言 生物制剂是一种有效的治疗选择 不完美的记忆如何导致错误的选择 Scripps研究科学家提出了一种创新的疫苗方法 全球超过150位专家提供循证指南以减少儿童放射治疗的长期影响 2021鱼跃医疗新品发布会,创新重塑医疗器械 科学家利用基因工程探索与精神疾病有关的机制 加州大学洛杉矶分校的科学家对免疫细胞的语言进行解码 学习肠道微生物教育免疫系统的新方法 身体如何与好的肠道细菌建立健康关系 研究人员开发了一种模型用于在实验室中研究子宫液 兔 大豆可以满足家庭蛋白质需求 明尼苏达大学医学院的研究人员确定了镇静药物的靶标 一个PROMPT低成本平台可加快淋病检测并发现抗生素耐药性 研究人员用光测量脑血流量和活动 研究表明古代人的肠道微生物种类更多 持续不断的头痛可能意味着您处于高血压的危险中 研究人员发现抑郁症和乳腺癌是如何联系的 新的单细胞谱系追踪技术可提供有关转移驱动因素的详细见解 苦丁茶多酚可能有助于预防结肠炎 经过几十年的进展研究人员可能正在赶上败血症 精神分裂症的听力可能始于婴儿期 通过鼻子给予普通的肌肉松弛剂显示出治疗神经退行性疾病的潜力 国内首个《植物基食品认证实施规则》备案发布 东风一顾芳华尽,春意丛生桃花姬 心脏病发作后使用造影剂MRI可以提高生存率 治疗伤口的新材料可以抵抗耐药菌 仅仅医疗补助扩张并不能解决癌症护理方面的差距 斑马鱼的大脑显示出新的神经元以协调的方式在大脑中形成 如何预测住院患者的严重流感 青春期是提高健康素养的机会之窗 冥想和精神健康可以保持衰老后的认知功能 四药组合可阻止癌症在小鼠中传播 远程医疗能否减轻而不是加剧医疗保健差距
您的位置:首页 >Science杂志 > 健康 >

染色体在细胞分化过程中如何改变形状

人类基因组由46条染色体组成,每条染色体的长度约为100至2亿个碱基对,是DNA双螺旋结构的基础。即使在细胞分裂相之间的相间期,染色体仍然紧密地堆积在细胞核内。在每个染色体上,称为核小体的规则结构单元对应于缠绕在八个组蛋白蛋白分子周围的146个碱基对长的DNA链。直到最近,除了核小体以外,还没有其他的规则结构。

多亏了新兴的基于基因组学的技术Hi-C(高通量染色体构象捕获),研究人员现在知道兆碱基规模上存在规则的结构单元,涉及数百万个碱基对。现在已经普遍接受的是,哺乳动物的染色体是由称为拓扑关联域(TAD)的兆碱基大小的球状单元组成的,它们被边界分隔开,大概是串珠的方式。此外,多个TAD组装形成所谓的A和B亚核小室。包含许多活性基因的TAD形成A区室,而具有很少或没有活性基因的TAD形成B区室。

通常认为,TAD是染色体的稳定单位,并且它们的边界位置在细胞类型之间不改变。相比之下,A / B隔室的组织在细胞类型之间有所不同,这意味着它们之间的边界在分化过程中会发生变化。但是,没有人观察到A / B隔室发生变化的情况。

现在,RIKEN生物系统动力学研究中心的科学家已经观察到了小鼠胚胎干细胞分化过程中A / B隔室的详细变化。(mESC)。他们发现了许多可将区室从A切换到B或反之亦然的基因组区域,有趣的是,这些基因组区域与将其复制时机(基因组DNA复制的时间顺序)从早期转换为晚期或从反向转换为反向的基因组区域很好地相关,分别。A到B区室的变化伴随着从核内部到外围的移动以及基因的抑制,而B到A区室的变化伴随着从核外围到内部的移动和基因的激活。这些结果强烈表明,A / B区室的变化代表了3-D核空间内染色体部分的物理运动,并伴随着基因表达和复制时间的变化。

关于染色体的物理运动与基因表达和复制时机变化之间的时间关系,研究小组发现,从B到A区室的基因组区域显然是在基因激活前一到两天这样做的。复制时间从晚到早。这引起了一个有趣的可能性,即区室的变化可能是基因激活和复制时间变化的先决条件。

研究小组继续描述了改变A / B区室的基因组区域的特征。人们发现隔室的变化主要是由于A / B隔室边界的变化,而新隔室的出现(例如在B隔室中出现A隔室,反之亦然)却很少见。因为隔离专区边界对应于TAD边界的子集,所以他们查看了多少个TAD更改了隔离专区,并发现大多数更改影响单个TAD。

重要的是,通过单细胞Repli-seq方法在单细胞中证实了这种单TAD级别的区室切换,该方法最近由研究团队开发,用于分析单细胞全基因组中的DNA复制调控(请注意,复制时机与A / B间隔非常相关)。该研究小组还发现,在分化细胞群中,A / B区室分布逐渐但均匀地变化,细胞瞬时类似于上皮细胞衍生的干细胞(EpiSC)状态,这是与ESC相比干细胞的高级形式。

总体而言,该团队的发现表明,A / B隔间的改变主要是通过将面向A / B隔间界面的单个TAD重新定位到相对的隔间来实现的。该小组负责人平谷一郎(Ichiro Hiratani)说:“这些隔室转换事件的累积可能反映或代表分化状态的变化,例如从ESC到EpiSC的变化。”

这样,发表在《自然遗传学》上的这项研究解释了染色体在细胞分化过程中如何经历结构变化。据Hiratani称,“我们的研究首次明确证明染色体构象的改变先于基于DNA的交易(例如基因表达和DNA复制时间)的改变。有趣的是,染色体构象的改变在单个TAD的水平受到调节。急于探索这种单TAD级染色体调控的基础,并具有根据先前染色体结构变化预测DNA交易的可能性。”

标签:

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。