霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Science杂志 > 健康认知 >

黄蜂毒液被重新用作抗生素药物

黄蜂和蜜蜂等昆虫的毒液中充满了可以杀死细菌的化合物。不幸的是,这些化合物中的许多对人也是有毒的,因此不可能将它们用作抗生素。

在对通常在南美黄蜂中发现的毒素的抗菌特性进行了系统的研究后,麻省理工学院的研究人员现在创建了该肽的变体,该变体对细菌有效,但对人细胞无毒。

在对小鼠的研究中,研究人员发现,它们最强的肽可以完全消除铜绿假单胞菌(Pseudomonas aeruginosa),铜绿假单胞菌是一种引起呼吸道和其他感染并且对大多数抗生素具有抗性的细菌。

麻省理工学院的博士后Cesar de la Fuente-Nunez说:“我们已经将一种有毒的分子重新设计成一种可以用来治疗感染的分子。”“通过系统地分析这些肽的结构和功能,我们已经能够调节它们的特性和活性。”

De la Fuente-Nunez是该论文的高级作者之一,该论文发表在12月7日的《化学》杂志上。自然通讯生物学杂志。麻省理工学院电气工程,计算机科学和生物工程副教授蒂莫西·卢(Timothy Lu)和巴西ABC联邦大学副教授瓦尼·奥利维拉(Vani Oliveira)也是资深作者。该论文的主要作者是麻省理工学院的前访问学生Marcelo Der Torossian Torres。

有毒变种

作为免疫防御的一部分,包括人类在内的许多有机体都产生可以杀死细菌的肽。为了帮助抵抗抗生素抗性细菌的出现,许多科学家一直在尝试使这些肽成为潜在的新药。

de la Fuente-Nunez及其同事着重研究的肽是从一种称为“ Polybia paulista”的黄蜂中分离出来的。这种肽足够小-只有12个氨基酸-研究人员认为,创建该肽的某些变体并对其进行测试以查看它们是否可能对微生物更有效且对人体的危害较小是可行的。

de la Fuente-Nunez说:“这是一种足够小的肽,您可以尝试使其尽可能多地突变为氨基酸残基,从而弄清楚每种结构单元如何促进抗菌活性和毒性。”

像许多其他抗微生物肽一样,这种毒液衍生肽被认为可以通过破坏细菌细胞膜来杀死微生物。该肽具有α螺旋结构,已知与细胞膜强烈相互作用。

在研究的第一阶段,研究人员创建了数十种原始肽的变体,然后测量了这些变化如何影响肽的螺旋结构及其疏水性,这也有助于确定肽与膜的相互作用程度。然后,他们针对7种细菌菌株和2种真菌对这些肽进行了测试,从而使它们的结构和理化性质与抗菌能力相关联成为可能。

根据他们确定的结构-功能关系,研究人员随后设计了另外几十个肽用于进一步测试。他们能够确定疏水性氨基酸和带正电荷的氨基酸的最佳百分比,并且他们还鉴定了一组氨基酸,其中任何变化都会损害分子的整体功能。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!