霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Science杂志 > 健康认知 >

如何控制视觉诞生的遗传程序

视网膜如何形成?神经元如何分化成为视觉系统的各个组成部分?通过关注这一复杂过程的早期阶段,瑞士日内瓦大学(UNIGE)的研究人员与法国洛桑联邦理工学院(EPFL)合作确定了控制不同类型视网膜细胞出生的遗传程序。以及它们连接到大脑正确部位的能力,这些部位在那里传递视觉信息。

另外,在神经退行性疾病的情况下,几种调节神经生长的基因的发现允许增强视神经再生的可能性。这些结果可以在《发展》杂志上找到。

哺乳动物的视觉系统由不同类型的神经元组成,每种神经元都必须在大脑中找到自己的位置,以使其能够将眼睛接收的刺激转化为图像。有光感受器可以检测光线,视神经神经元可以将信息发送到大脑,皮层神经元可以形成图像,而中间神经元可以在其他细胞之间建立连接。尽管尚未在胚胎发育的早期分化,但这些神经元都是由祖细胞产生的,能够产生不同类别的特化神经元。为了更好地了解这种机制的确切过程并确定视网膜构建过程中起作用的基因,研究人员研究了单个细胞中基因表达的动力学。

“为了监测细胞中的基因活性并了解视网膜神经元的早期规格,我们在视网膜发育过程中对6000多个细胞进行了测序,并进行了大规模的生物信息学分析,” UNIGE基础神经科学系的Quentin Lo Giudice博士解释说。医学系和本文的第一作者。

映射正在建设的系统

研究人员与EPFL的Gioele La Manno和Marion Leleu合作,研究了祖细胞在细胞周期以及渐进分化过程中的行为。然后,科学家非常精确地绘制了视网膜发育过程中不同细胞类型以及该过程早期阶段发生的遗传变化。“除了它们的“年龄”(即它们在胚胎生命中产生时)之外,神经元的多样性还取决于它们在视网膜中的位置,这预示着它们是大脑中特定的靶标,”皮埃尔·法布尔(Pierre Fabre)解释说。 UNIGE医学院基础神经科学系负责这项工作。“此外,通过预测神经基因的顺序激活,我们能够重建几个分化程序,

研究人员还进行了第二次分析。如果右眼基本上主要连接到大脑的左侧,反之亦然,那么右眼中的一小部分神经元就会连接到大脑的右侧。实际上,所有具有两只眼睛且视野重叠的物种(例如哺乳动物)必须能够将两只眼睛的信息混合到大脑的同一部分。这种会聚使得可以双眼看到并且感知深度或距离。Quentin Lo Giudice说:“知道这一现象后,我们对这些细胞进行了遗传和单独的“标记”,以便跟随它们进入视觉系统的最终位置。通过比较这两个神经种群的遗传多样性,研究人员发现了24个在三维视觉中起关键作用的基因。

走向再生医学

即使在神经元到达大脑之前,它们也必须通过视神经离开视网膜。该研究的最后一部分确定了在正确路径上引导神经元的分子。而且,这些相同的分子还允许轴突的初始生长,轴突是将电信号传递到突触的神经元部分,从而确保信息从一个神经元传递到另一个神经元,以及控制该过程的大约20个基因。这一发现是再生医学向前迈出的重要一步。

我们对适当地指导轴突所需的分子了解得越多,我们就越有可能开发出一种治疗神经创伤的疗法。“如果视神经被青光眼切断或损坏,我们可以想象重新激活那些通常只在胚胎发育阶段才活跃的基因。通过刺激轴突的生长,我们可以使神经元保持联系并生存。”计划开展有关该主题的研究项目的Fabre博士解释说。尽管神经元的再生能力很低,但它们确实存在,必须找到鼓励神经元发育的技术。事故后对受损脊髓的遗传刺激也基于相同的想法,并开始显示出其首次成功。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!