Lonza与CELLINK合作推进完整的3D细胞培养工作流程哈德斯菲尔德大学向一个研究小组提供了资金研究人员在理解炎症细胞死亡和疾病的作用方面取得了很大进展过度消费和经济增长是环境危机的主要驱动力摄入蛋白质片段可改善阿尔茨海默病小鼠的工作记忆和长期记忆研究人员通过测量血脑屏障的渗漏来确定足球运动员是否患有CTE研究人员发现细胞去除是由机械不稳定性引起的CHOP研究发现 远程监护可以有效检测高危新生儿的癫痫发作结果显示 说话后大脑反应具有特别高的时间保真度新的研究成果有助于抑制致癌细胞和治疗癌症研究人员称遗传可能决定伤口感染和愈合聚焦超声显示有望治愈最致命的脑肿瘤机载地图揭示加州红杉的气候敏感性根据最新研究 牛的免疫阈值可能比我们想象的要低研究人员发现热环通过微波无线产生超声波脉冲圣裘德为儿童脑肿瘤的研究创造了新的资源科学家利用蛋白质和核糖核酸制造称为囊泡的中空球形袋遏制抗生素耐药性演变的突破点在巴西发现的基因突变会增加患癌症的风险发现的最小的恐龙蛋长约4.5厘米 宽约2厘米 重约10克 与鹌鹑蛋的重量相当海马在人类时空思维模式中的作用为什么植物是绿色的?研究小组的模型再现了光合作用新冠新增16名NBA感染病例 新冠检测了302名NBA球员Sygnature因其在药物发现方面的质量和科学卓越而享有盛誉与领先的智能实验室提供商Labforward建立了合作关系简单的临床试验可以检测患者术后或严重损伤后的出血风险实验室发现第一个可以模拟膝盖的软骨模拟凝胶Aβ蛋白的三维结构揭示了阿尔茨海默病毒性的新机制莱比锡研究人员使用一种计算方法从空气污染数据中消除天气影响结肠癌的快速基因组分析可以改善患者的治疗选择健脑游戏有助于提高老年人的驾驶技能研究人员报道转基因真菌成功杀死了疟疾蚊子深海矿物质和微量元素有助于提高高强度作业能力饮食中加入李子干可以提高超重成年人的营养消耗吃绿叶蔬菜沙拉可以改善更年期后的心血管健康研究人员发现 人体也可以发动免疫细胞进行反击研究发现 新孕妇和准妈妈使用熊胆疗法治疗妊娠相关疾病将大脑视为一个网络可以使研究人员从脑电图中提取更有意义的数据研究表明 抗生素抗性基因通过基因资本主义在大肠杆菌中持续存在数据显示 47%的人正在使用技术与医疗保健提供者交流人类大脑发育的新基因组图谱通用肠道微生物来源可以预测肝硬化发光染料可能有助于消除癌症下一代测序可以为罕见的代谢紊乱提供精确的药物人胰腺切片长期培养显示β细胞再生脊柱外科研究中财务披露不完整的比例非常高圣地亚哥动物园对老挝北部野生动物的消费进行了一项新的研究粪便微生物使诊断更具挑战性民意调查显示 纽约人对恢复正常更加犹豫不决全方位探访人类基因治疗的关键支柱

研究使用面包酵母显示基因相互作用如何影响令人惊讶的细胞结果

导读 大多数疾病都很复杂-由多个基因的缺陷引起-但是研究不同遗传变异的组合如何影响细胞性状具有挑战性。弗雷德里克·罗斯(Frederick Roth)小

大多数疾病都很复杂-由多个基因的缺陷引起-但是研究不同遗传变异的组合如何影响细胞性状具有挑战性。弗雷德里克·罗斯(Frederick Roth)小组的一项新研究今天在《细胞系统》(Cell Systems)杂志上发表,该研究使用面包酵母作为模型系统,以展示一种新方法来了解基因如何以意想不到的方式相互作用。

Donnelly Center团队先前对酵母细胞的研究揭示了基因如何成对和三联结合地相互作用,其中考虑了酵母基因组中几乎所有6,000个基因。

现在,罗斯是唐纳利细胞与生物分子研究中心的分子遗传学和计算机科学教授,也是多伦多西奈卫生系统的Lunenfeld-Tanenbaum研究所的资深科学家,他想进一步研究并研究更大的基因组一起工作。

他决定将重点放在一组16个基因上,这些基因编码称为ABC转运蛋白的蛋白质,可以从细胞中抽出毒素和废物。ABC转运蛋白存在于细胞表面,并与耐药性有关。

ABC转运蛋白是将小分子泵出细胞的关键方法。它们是抗癌药的主要来源,也是细菌和真菌对抗生素的抗药性。”

罗斯的团队开发了一种通用策略,即X基因遗传分析或XGA,以了解扰动许多不同基因组合的影响。为了证明这种方法,他们设计了5000多个酵母菌株,每个菌株都缺少16个ABC转运蛋白基因的随机子集,并测试了每种菌株在接触16种不同药物时的生长能力。

每个ABC转运蛋白都能够从特定的有害分子子集中清除细胞。因此,对于任何给定的药物,都希望淘汰ABC转运蛋白将什么都不做,或者会使酵母菌对该药物更敏感。就一线抗真菌药物氟康唑而言,删除PDR5基因可使细胞对氟康唑高度敏感。考虑到已知PDR5转运蛋白可以抽出氟康唑,因此可以预料。

但是在某些情况下,去除转运蛋白可以增强而不是降低细胞对药物的抵抗力。例如,当删除基因SNQ2时,细胞对氟康唑的耐药性增强。甚至更令人惊讶的是,有一些例子表明,去除更多的转运蛋白具有协同作用,从而导致高度耐药的细胞。

随着研究人员开始从酵母中去除某些转运蛋白基因,细胞生长得更好,直到缺少四个基因的菌株的生长速度是包含所有基因的“健康”菌株的两倍。当去除了已知的氟康唑出口者PDR5时,细胞再次对氟康唑变得敏感,这表明这四个转运蛋白通常“阻碍”了PDR5的生长,因此随着这些基因中更多基因的缺失,其活性也随之提高。但是,如何发生尚不清楚。

根据关于这些基因的所有已知知识,实验室的博士后研究员,论文的主要作者Albi Celaj开发了一种计算“神经网络”模型,该模型表明这四个基因可以至少两种不同的方式抑制PDR5。罗斯的团队与Donnelly中心的教授Igor Stagljar的团队合作,证实了这种模型。他们表明,这四个基因都可以抑制细胞产生的PDR5转运蛋白,并且SNQ2和YOR1转运蛋白可以直接与PDR5结合,从而提供了抑制PDR5转运蛋白活性的潜在直接机制。

罗斯说:“我们从前知道PDR5是氟康唑的主要外排泵。”“但是现在我们发现了这个由五个基因组成的故事,我们需要删除四个基因以获得最大的抵抗力,但是删除第五个基因[PDR5]完全可以逆转这种影响。”

标签:

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

最新文章