霁彩华年,因梦同行—— 庆祝深圳霁因生物医药转化研究院成立十周年 情绪益生菌PS128助力孤独症治疗,权威研究显示可显著改善孤独症症状 PARP抑制剂氟唑帕利助力患者从维持治疗中获益,改写晚期卵巢癌治疗格局 新东方智慧教育发布“东方创科人工智能开发板2.0” 精准血型 守护生命 肠道超声可用于检测儿童炎症性肠病 迷走神经刺激对抑郁症有积极治疗作用 探索梅尼埃病中 MRI 描述符的性能和最佳组合 自闭症患者中痴呆症的患病率增加 超声波 3D 打印辅助神经源性膀胱的骶神经调节 胃食管反流病患者耳鸣风险增加 间质性膀胱炎和膀胱疼痛综合征的临床表现不同 研究表明 多语言能力可提高自闭症儿童的认知能力 科学家揭示人类与小鼠在主要癌症免疫治疗靶点上的惊人差异 利用正确的成像标准改善对脑癌结果的预测 地中海饮食通过肠道细菌变化改善记忆力 让你在 2025 年更健康的 7 种惊人方法 为什么有些人的头发和指甲比其他人长得快 物质的使用会改变大脑的结构吗 饮酒如何影响你的健康 20个月,3大平台,300倍!元育生物以全左旋虾青素引领合成生物新纪元 从技术困局到创新锚点,天与带来了一场属于养老的“情绪共振” “华润系”大动作落槌!昆药集团完成收购华润圣火 十七载“冬至滋补节”,东阿阿胶将品牌营销推向新高峰 150个国家承认巴勒斯坦国意味着什么 中国海警对非法闯仁爱礁海域菲船只采取管制措施 国家四级救灾应急响应启动 涉及福建、广东 女生查分查出608分后,上演取得理想成绩“三件套” 多吃红色的樱桃能补铁、补血? 中国代表三次回击美方攻击指责 探索精神健康前沿|情绪益生菌PS128闪耀宁波医学盛会,彰显科研实力 圣美生物:以科技之光,引领肺癌早筛早诊新时代 神经干细胞移植有望治疗慢性脊髓损伤 一种简单的血浆生物标志物可以预测患有肥胖症青少年的肝纤维化 婴儿的心跳可能是他们说出第一句话的关键 研究发现基因检测正成为主流 血液测试显示心脏存在排斥风险 无需提供组织样本 假体材料有助于减少静脉导管感染 研究发现团队运动对孩子的大脑有很大帮助 研究人员开发出诊断 治疗心肌炎的决策途径 两项研究评估了医疗保健领域人工智能工具的发展 利用女子篮球队探索足部生物力学 抑制前列腺癌细胞:雄激素受体可以改变前列腺的正常生长 肽抗原上的反应性半胱氨酸可能开启新的癌症免疫治疗可能性 研究人员发现新基因疗法可以缓解慢性疼痛 研究人员揭示 tisa-cel 疗法治疗复发或难治性 B 细胞淋巴瘤的风险 适量饮酒可降低高危人群罹患严重心血管疾病的风险 STIF科创节揭晓奖项,新东方智慧教育荣膺双料殊荣 中科美菱发布2025年产品战略布局!技术方向支撑产品生态纵深! 从雪域高原到用户口碑 —— 复方塞隆胶囊的品质之旅
您的位置:首页 >Science杂志 > 生态环境 >

研究人员在细胞信号传导方面取得重大突破

利物浦大学的研究人员在细胞信号传导领域取得了重大突破。

在人类中,细胞中的信号传导通常会调节细胞的生长和修复。然而,异常的细胞信号转导导致许多疾病,包括癌症和神经。因此,鉴定在健康和疾病状态下控制细胞信号传导的特定蛋白质可以帮助加速疾病生物标志物和药物靶标的发现。

由克莱尔·艾尔斯(Claire Eyers)教授领导的大学生物化学系的一个小组使用一种新的涉及质谱的分析工作流程,表明细胞信号传导中的蛋白质修饰(磷酸化)现象比以前认为的要多样化和复杂得多。这项发表在《EMBO杂志》上的研究为生物科学和临床研究人员开拓了一个全新的领域。

蛋白质磷酸化涉及到蛋白质的磷酸基团,是蛋白质功能的关键调节剂,定义位点特异性磷酸化对于理解基础和疾病生物学至关重要。在脊椎动物中,研究主要集中在丝氨酸,苏氨酸和酪氨酸氨基酸的磷酸化上。然而,越来越多的证据表明,其他“非规范”氨基酸的磷酸化也调节细胞生物学的关键方面。

不幸的是,表征蛋白质磷酸化的标准方法在很大程度上不适用于这些新型非规范磷酸化的分析。因此,迄今为止,人类蛋白质磷酸化的完整领域尚未被探索。

这项研究报告了一种新的磷酸肽富集策略,该策略可通过基于质谱的磷酸蛋白质组学鉴定人蛋白质上的组氨酸,精氨酸,赖氨酸,天冬氨酸,谷氨酸和半胱氨酸磷酸化位点。

值得注意的是,研究人员发现,独特的“非规范”磷酸化位点的数量大约是在研究更深入的丝氨酸,苏氨酸和酪氨酸残基上观察到的磷酸化位点数量的三分之一。

整合生物学研究所蛋白质组研究中心主任克莱尔·艾尔斯(Claire Eyers)首席研究员说:

该资源中报道的新的非规范性磷酸化位点可能仅代表冰山一角。鉴定可能存在于脊椎动物和非脊椎动物中的各种磷酸化景观是未来的重要挑战。

多个非规范性磷酸化位点的多样性和普遍性提出了一个问题,即它们如何对全球细胞生物学作出贡献,以及它们是否可能代表疾病相关信号网络中的生物标志物,药物靶标或抗靶标。

我们开发的基于质谱的分析工作流程将使来自世界各地的科学家能够以高通量的方式定义和理解这些新型蛋白质修饰类型的调控变化,我们已经证明了这种变化在人体细胞中已得到广泛应用。

标签:

免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!